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Abstract

Depression is one of the most common mental health disorders and one of the top causes of disability throughout the world.
The present study sought to identify putative causal associations between depression and hundreds of complex human traits
through a genome-wide screening of genetic data and a hypothesis-free approach. We leveraged genome-wide association studies
summary statistics for depression and 1504 complex traits and investigated potential causal relationships using the latent causal
variable method. We identified 559 traits genetically correlated with depression risk at FDR < 5%. Of these, 46 were putative causal
genetic determinants of depression, including lifestyle factors, diseases of the nervous system, respiratory disorders, diseases of the
musculoskeletal system, traits related to the health of the gastrointestinal system, obesity, vitamin D levels and the use of prescription
medications, among others. No phenotypes were identified as potential outcomes of depression. Our results suggest that genetic
liability to multiple complex traits may contribute to a higher risk for depression. In particular, we show a putative causal genetic
effect of pain, obesity and inflammation on depression. These findings provide novel insights into the potential causal determinants
of depression and should be interpreted as testable hypotheses for future studies to confirm, which may facilitate the design of new
prevention strategies to reduce depression’s burden.

Introduction
Depression is one of the most common mental health
disorders and one of the top causes of disability through-
out the world (1). Its 12-month prevalence is estimated
to be 4.4% worldwide, affecting 5.1% of females and 3.6%
of males (2–4). Depression is characterized by a persistent
low mood or anhedonia (i.e. loss of pleasure and interest)
and other symptoms such as fatigue or loss of energy,
significant weight loss and sleep disturbance (5).

Epidemiological studies have identified factors that
contribute to the development of depression. For
instance, there is evidence that social isolation, alcohol
dependence, psychological stress and medical condi-
tions, such as cancer, are risk factors for depression (6–9).
Furthermore, several hypotheses propose mechanisms to
explain the pathogenesis of depression, suggesting that
genes, psychosocial stress and inflammation may play a
role in the development of depression (10–12).

Depression is a heritable trait, with twin and family
studies estimating its heritability around 38% (13). In

addition, genome-wide association studies (GWAS) have
identified 223 independent genetic variants related to
depression (14) and have pointed out genetic correlations
between depression and other complex traits such as
anxiety, autism, ADHD, schizophrenia, bipolar disorder,
coronary artery disease and body fat (15–18).

Pleiotropic effects, which can be either vertical or
horizontal, explain genetic correlations (19). Horizontal
pleiotropy refers to genetic variants that have an
independent and direct effect on both traits (i.e. owing
to a shared biological pathway). In contrast, vertical
pleiotropy can be understood as a causal cascade in
which the effect of a genetic variant on one trait is
mediated by its effect on another trait (Fig. 1) (20).

Mendelian randomization methods, which employ
genetic variants as instrumental variables, are com-
monly used in genetic epidemiological studies to
infer potential causal relationships between a pair of
traits. One of the essential assumptions of traditional
Mendelian randomization methods is that vertical
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Figure 1. Illustration of horizontal and vertical pleiotropy concepts. (A) Horizontal pleiotropy: genetic variants independently influence the risk of traits
A and B. (B) Vertical pleiotropy: genetic variants contribute to the risk of trait B through trait A, showing a potential causal relationship. rG = genetic
correlation.

pleiotropy drives the association between both traits (i.e.
genetic variants are only associated with the outcome
through the exposure) (21,22). If this assumption is
violated through horizontal pleiotropic effects, results
can be biased, increasing the risk for false-positive
findings (23). Therefore, the latent causal variable (LCV)
method was developed as an alternative to Mendelian
randomization. LCV aims to assess potential causal
associations between complex traits while accounting
for potential horizontal pleiotropy. Advantages of the LCV
method include that it is less susceptible to confounding
by horizontal pleiotropy, it leverages genome-wide data
and it is robust to sample overlap (24).

Despite the extensive efforts made to identify potential
risk factors and outcomes of depression in previous
observational and Mendelian randomization studies
(25,26), there is still a need to uncover disease-modifying
traits to screen individuals at a higher risk and enhance
the design of prevention strategies. Here, we leverage a
vast collection of GWAS summary statistics (N = 1504)
and a larger sample size for depression than previous
studies to perform LCV analyses and infer putative
causal relationships between depression and other
complex phenotypes. Our results should be interpreted
as a set of testable hypotheses for future epidemiological
and interventional studies.

Results
We identified 559 traits genetically correlated with
depression risk at False Discovery Rate (FDR) < 5% (Sup-
plementary Material, File S1). Of those traits, 37 revealed
a putative causal genetic association with depression
[genetic causality proportion (GCP); |GCP| > 0.60], while
9 showed evidence for limited partial genetic causality
(|GCP| < 0.60). No phenotypes were identified as out-
comes of depression. Putative risk factors of depression
included physical health conditions, such as respiratory
disorders, diseases of the musculoskeletal system, dis-
eases of the nervous system and phenotypes related to

the health of the gastrointestinal system, among others
(Fig. 2). Similarly, lifestyle factors and the use of several
medications increased the likelihood of depression
(Table 1).

Physical health conditions inferred to increase risk of
depression included malignant neoplasm of bronchus
and lung (ICD10) (GCP = −0.60, rG = 0.29), self-reported
ulcerative colitis (GCP = −0.83, rG = 0.19), high triglyc-
eride levels (GCP = −0.72, rG = 0.15), self-reported sus-
ceptibility to Helicobacter pylori infection (GCP =−0.82,
rG = 0.38), self-reported psoriasis (GCP =−0.77, rG = 0.19),
polyneuropathies and disorders of the peripheral ner-
vous system (GCP = −0.70, rG = 0.25) and obesity
(GCP =−0.70, rG = 0.32), among others. In contrast, high
vitamin D levels were inferred to potentially decrease the
risk of depression (GCP =−0.66, rG = −0.15).

Among lifestyle-related phenotypes, we observed
that being a fruit consumer (GCP = −0.69, rG = −0.32) or
rarely/never worked with materials containing asbestos
(GCP =−0.70, rG = −0.43) decreased the risk for depres-
sion. In addition, potential vertical pleiotropic effects
were observed between phenotypes related to alcohol
consumption and depression. These included substances
taken for anxiety: drugs or alcohol (more than once)
(GCP =−0.90, rG = 0.81) and mental and behavioral
disorders owing to use of alcohol (ICD10) (GCP =−0.61,
rG = 0.23), increasing the likelihood of depression. Con-
sistently, never being injured or injuring someone
else through drinking alcohol (GCP = −0.75, rG =−0.36)
decreased the risk of depression.

The use of several medications potentially increased
the risk of depression. These medications included
gabapentin (GCP = −0.63, rG = 0.32), which is usually
prescribed for epilepsy and peripheral neuropathy; dihy-
drocodeine (GCP = −0.66, rG = 0.49), an opioid analgesic
indicated for moderate to severe pain; beclometasone
(GCP =−0.78, rG = 0.30), a corticosteroid prescribed for
several conditions including asthma; and diazepam
(GCP =−0.85, rG = 0.57), which is commonly prescribed
for anxiety-related traits. In addition, medications
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Figure 2. Putative causal associations for depression. Each dot represents a trait with a significant genetic correlation with depression. The x-axis shows
GCP values, while the y-axis shows the GCP-related Z-scores as a measurement of statistical significance. The horizontal red dashed lines represent the
statistical significance threshold (FDR < 5%). The vertical gray dashed lines divide traits that are potential causal determinants of depression (on the
left) and traits that are putative consequences of depression (on the right). Results are shown separately for traits (A) with a positive genetic correlation
with depression and (B) with a negative genetic correlation with depression.

prescribed for gastrointestinal ulcers, such as gaviscon
liquid (GCP = −0.52, rG = 0.37) and ranitidine (GCP =−0.73,
rG = 0.55), potentially increased the likelihood of depres-
sion.

Sensitivity analysis
As a sensitivity analysis, we performed LCV analyses to
further explore potential causal associations identified

in this study using publicly available GWAS summary
statistics with larger sample sizes than those available
in CTG-VL (Table 2). Overall, we did not observe any
direct potential causal effects between depression and
substance use–related phenotypes, such as cigarettes per
day, smoking cessation, smoking initiation and drinks per
week. Similarly, despite the large genetic overlap between
phenotypes (rG = 0.91), we did not identify potential
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Table 1. Traits with an inferred potential causal relationship with depression

Phenotype GCP GCP P-value rG

Impingement syndrome of the shoulder -0.92 1.69E−06 0.29
Taking drugs or alcohol for anxiety more than once -0.90 1.42E−22 0.81
Other diseases of anus and rectum (ICD10) -0.88 7.18E−16 0.57
Medication: diazepam -0.85 1.24E−10 0.57
Umbilical hernia (ICD10) -0.83 5.87E−11 0.21
Other and unspecified injuries of head (ICD10) -0.83 2.52E−02 0.30
Self-reported H. pylori -0.82 2.30E−08 0.38
Chest pain felt during physical activity -0.79 4.73E−06 0.52
Medication: beclomethasone -0.78 2.15E−06 0.30
Self-reported psoriasis -0.77 2.15E−06 0.19
Leg pain when walking uphill or hurrying -0.75 1.08E−04 0.37
Diaphragmatic hernia (ICD10) -0.75 1.06E−04 0.41
Never been injured or injured someone else through drinking alcohol -0.75 1.86E−04 -0.36
Age of stopping smoking -0.74 2.11E−04 0.35
Vitamin D (male) -0.73 1.69E−06 -0.17
Medication: ranitidine -0.73 2.12E−03 0.55
Breathing problems did not improve/stopped away from workplace or on
holiday

-0.73 1.37E−37 0.23

Triglycerides -0.72 7.97E−09 0.15
Medication: fluoxetine -0.72 1.98E−02 0.82
Self-reported ulcerative colitis -0.71 3.58E−05 0.19
Obesity -0.70 5.39E−03 0.32
Polyneuropathies and other disorders of the peripheral nervous system -0.70 2.94E−03 0.25
Diseases of the ear and mastoid process -0.70 3.85E−03 0.32
Rarely/never worked with materials containing asbestos -0.70 7.69E−03 -0.43
Fruit consumers -0.69 9.30E−04 -0.32
Osteoporosis without pathological fracture (ICD10) -0.67 2.48E−02 0.35
Ever addicted to any substance or behavior -0.67 2.73E−02 0.54
Triglycerides (male) -0.66 6.12E−04 0.15
Vitamin D (both sexes) -0.66 3.49E−05 -0.15
Medication: dihydrocodeine -0.66 4.19E−02 0.49
Other diseases of intestine (ICD10) -0.65 4.92E−02 0.40
Sleeping too much -0.65 2.23E−02 0.37
Age hay fever or allergic rhinitis diagnosed by doctor -0.64 7.69E−03 0.22
Medication: gabapentin -0.63 3.64E−02 0.32
Mental and behavioral disorders owing to alcohol (ICD10) -0.61 2.15E−02 0.23
Numeric addition test -0.61 4.92E−02 -0.26
Malignant neoplasm of bronchus and lung (ICD10) -0.60 2.86E−17 0.29

This table shows traits with a significant (FDR < 5%) and strong GCP (|GCP| > 0.60) with depression. Owing to space restrictions, all nominally significant genetic
correlations (i.e. P-value < 0.05 before multiple testing correction) for depression are shown in Supplementary Material, File S1. Phenotype, phenotype with a
potential causal association with depression; GCP P-value, GCP P-value after multiple testing correction; rG, genetic correlation.

causal effects between lifetime anxiety and depression.
Nonetheless, we replicated the causal association in
which high vitamin D levels potentially decrease the
risk for depression (GCP =−0.59, rG = −0.12). Consistent
with our previous results, our sensitivity analysis failed
to identify evidence for a causal association between BMI
and depression.

Discussion
In this work, we conducted a phenome-wide screening
and LCV analyses between depression and 1504 other
complex traits to shed light on the putative causal
architecture of depression. Previous genetic epidemio-
logical studies have proposed different risk factors for
depression using traditional Mendelian randomization
methods (25,27,28). For instance, inflammatory gastroin-
testinal diseases, anxiety disorders and asthma have

Table 2. Latent casual variable results for depression and other
complex traits in sensitivity analysis

Phenotype GCP GCP P-value rG

Vitamin D -0.59 1.00E−300 -0.12
Cigarettes per day 0.06 0.53 -0.23
Smoking initiation -0.04 0.54 -0.31
Drinks per week 0.11 0.61 -0.06
Smoking cessation -0.07 0.62 -0.24
BMI 0.26 0.87 0.11

This table shows results for the LCV method between depression and other
complex traits.

been associated with a higher risk for depression (27,29).
Here, we sought to assess the robustness to the modeling
of horizontal pleiotropy of findings from previous studies
and provide novel insights into the potential causal
determinants and outcomes of depression by uncovering
a set of testable hypotheses for future studies.

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/31/17/2887/6565295 by U
niversity of Q

ueensland user on 07 M
arch 2023



Human Molecular Genetics, 2022, Vol. 31, No. 17 | 2891

In the present study, traits such as difficulty stopping
worrying during the worst period of anxiety and taking
drugs or alcohol for anxiety more than once potentially
increased the risk of depression. In particular, for the first
phenotype, half of its genetic correlation with depression
was explained by potential vertical pleiotropic effects,
while for the latter, almost all of the genetic overlap
is consistent with vertical pleiotropic effects. These
symptoms are observed in anxiety disorders, which are
highly comorbid with depression (30,31). For instance,
previous studies suggested that both disorders have a
substantial genetic overlap (15,32). In the present study,
we did not identify potential vertical pleiotropic effects
between lifetime anxiety and depression. Although it can
be challenging to establish causal associations between
co-occurring disorders, it could be the case here that
indirect anxiety-related phenotypes serve as a proxy
for depression. In addition, it has been suggested that
taking drugs or alcohol to overcome depression and
anxiety may exacerbate their symptoms and influence
the development of other mental disorders, perhaps as a
consequence of intoxication or withdrawal (7,33).

Mental and behavioral disorders owing to alcohol
(ICD10) were a potential causal determinant for depres-
sion in which 60% of the genetic overlap with depression
is explained by vertical pleiotropic effects. In addition,
in the present study, never being injured or injuring
someone else through drinking alcohol, which indirectly
suggests a lower alcohol consumption, decreased the risk
of depression (three-quarters of its genetic correlation
with depression was explained by potential vertical
pleiotropic effects). Previous studies have observed
that depressive episodes were prevalent after alcohol
drinking, withdrawal and intoxication (7,33–35), which
suggests that a higher alcohol intake is associated with
an increase in the incidence of depression (36). However,
our sensitivity analysis did not show any potential causal
effects between drinks per week and depression. There-
fore, another plausible explanation for the indirect effect
we originally observed of alcohol on depression could
be a common genetic factor or a shared environment
between heavy alcohol drinkers and depression patients
(37). Regarding the relationship between smoking and
depression, our sensitivity analysis did not show any
potential causal effects between smoking phenotypes
(cigarettes per day, smoking initiation and smoking
cessation) and depression.

It has been shown that depression has a higher inci-
dence and prevalence among lung cancer patients (9,38–
40). A likely explanation for this is that lung cancer
patients face a relatively low survival rate of around 21%,
which has a detrimental psychological effect (41,42). In
some cases, patients may be subjected to high finan-
cial stress related to treatment costs, which has been
associated with an increased risk of developing depres-
sive symptoms (41,42). Our results show malignant neo-
plasm of bronchus and lung (ICD10) and lung cancer
and mesothelioma, potentially increasing the likelihood

of depression, perhaps as a consequence of a detrimental
psychological effect on patients upon diagnosis. Both
phenotypes revealed a moderate genetic correlation with
depression. In particular, for the first phenotype, three-
fifths of the genetic overlap was explained by potential
vertical pleiotropic effects, while for the latter, 46% of
the genetic overlap is consistent with potential vertical
pleiotropic effects.

There is accumulating observational and genetic
evidence showing that atypical features of depression,
such as increased appetite and/or weight during an
active depressive episode, are associated with obesity-
related traits (43). In the present study, obesity influenced
a higher risk of depression (70% of its genetic correlation
with depression is consistent with vertical pleiotropic
effects), which may be explained by psychological and
inflammatory factors. From a psychological perspective,
obesity can affect self-esteem and body image percep-
tion. It could, in some instances, lead to depressive
symptoms, particularly for individuals in communities
where their body image is compared with cultural beauty
standards, which are often defined by a low body mass
index (44–47). On the other side, inflammation has also
been suggested as a putative mechanism underlying
depression (48). For instance, patients with depression
are known to show higher levels of inflammatory
biomarkers in peripheral blood (10), and it is well
established that obesity leads to a chronic inflammatory
state (49) which in turn increases the production of
pro-inflammatory cytokines and c-reactive protein (50).
Therefore, our results align with the hypothesis that
an inflammatory state may contribute to a higher risk
of depression, perhaps as a consequence of obesity.
Nonetheless, further research is required to pinpoint
the potential molecular underpinnings underlying the
association between depression and inflammation.

Previous studies have reported an association between
high triglycerides, low HDL cholesterol levels and high
risk for depression (51,52), while some other studies
found an inverse association with depression (53). Our
results support the hypothesis in which high HDL
cholesterol levels could be protective for depression
(Supplementary Material, File S1), while high triglyceride
levels might increase the likelihood of depression (54).
In particular, for the first phenotype, half of its genetic
overlap with depression was explained by potential
vertical pleiotropic effects, while for the latter, around
70% of the genetic overlap is consistent with vertical
pleiotropic effects. This finding is most likely explained
by obesity-related effects, which are well known to lower
HDL cholesterol and increase triglyceride levels (55,56).

The association between chronic pain and depression
has been investigated before (57,58). For instance, it has
been reported that neuropathic pain and depression
share common pathogenic and inflammatory pathways,
and neuroimaging findings suggest that common brain
areas are responsible for regulating emotions and
pain experiences (59). Chronic pain is associated with
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higher rates of depression, and comorbid chronic pain
and depression are associated with poorer outcomes,
including higher rates of suicidality and unsatisfac-
tory antidepressant response both on the phenotypic
(60) and genetic levels (61). Pain related to chronic
musculoskeletal disorders has been associated with a
high psychological distress level (62). In the present
study, musculoskeletal disorders, such as meniscus
derangement, impingement syndrome of the shoulder
and osteoporosis without pathological fracture (ICD10),
were potential causal determinants of depression, as
were disorders of the peripheral nervous system. In
particular, for the first phenotype, two-fifths of its
genetic overlap with depression was explained by
potential vertical pleiotropic effects, while for the last
two phenotypes, 66 and 70% of the genetic overlap
are explained by potential vertical pleiotropic effects,
respectively. In addition, almost all of the genetic
overlap for the impingement syndrome of the shoulder
phenotype with depression is consistent with potential
vertical pleiotropic effects. Consistently, medications
usually prescribed for easing chronic pain symptoms,
such as gabapentin and dihydrocodeine, which can be
used as proxies for neuropathic pain and moderate to
severe pain, respectively, potentially increased the risk of
depression. These findings suggest that identifying and
addressing pain as a potential risk factor for depression
could be of great importance.

We observed putative causal associations in which
gastrointestinal disorders increased the risk for depres-
sion. These included susceptibility to H. pylori infection,
ulcerative colitis and the use of gaviscon liquid and
ranitidine, which can be interpreted as proxies for
peptic ulcers (63,64). In particular, for the previously
mentioned traits, 82, 71, 52 and 73% of their genetic
overlap with depression was explained by potential
vertical pleiotropic effects, respectively. Previous studies
have proposed a mechanism underlying the relationship
between H. pylori infection and depression, suggesting
that the infection plays a role in immunity and serotonin
receptors upregulation, which may increase the risk
of psychiatric disorders, including depression (65).
Furthermore, evidence from a previous Mendelian
randomization study supported that depression could
potentially increase the risk of developing peptic ulcer
disease. However, combined gastrointestinal disorders
(i.e. peptic ulcer and inflammatory bowel diseases)
showed potential causal associations with depression
in both directions (66). Our results suggest that gastroin-
testinal disorders could be a putative causal determinant
of depression; this association is most likely explained
by immune-inflammatory pathways (12,67) and the
detrimental psychological effect of physical illness on
vulnerable individuals (68).

Previous studies have investigated the potential sup-
portive role of vitamin D supplementation (69,70), sug-
gesting that vitamin D has homeostatic and immunomod-
ulatory effects (71). Furthermore, a Mendelian

randomization study found a putative causal indirect
effect of depression decreasing vitamin D concentra-
tions, which is most likely explained by behaviors that
are well known to lead to reduced production of vitamin
D, such as less outdoor and physical activities decreasing
sun exposure (72). Our results are consistent with previ-
ous findings in which vitamin D may have a protective
direct effect on depression, and our results suggest that
two-thirds of the genetic correlation between vitamin
D and depression was explained by vertical pleiotropic
effects. Nonetheless, we cannot rule out the possibility of
sun exposure (i.e. through outdoor activities) underlying
this association.

Previous studies have observed that a low socioeco-
nomic status (SES) is associated with a higher preva-
lence of depression (73,74). Individuals with lower SES are
more likely to work in an environment exposed to haz-
ardous substances and involuntarily tend to consume
less healthy food, as its price is more accessible com-
pared with nutritious meals (75–77). In the present study,
traits such as being a fruit consumer and rarely/never
worked with materials containing asbestos influenced a
potentially lower risk for depression. Around 70% of the
genetic overlap of each of the aforementioned pheno-
types with depression is consistent with potential verti-
cal pleiotropic effects. These findings add up to previous
reports of a positive association between higher fruit con-
sumption and better mental health (78,79), suggesting
that fruit, which is rich in minerals and vitamins, may
have a role in modulating neurotransmitter receptors
associated with depressive symptoms (80). In addition,
fruit consumption may protect the body from oxidative
stress, which has been suggested to contribute to depres-
sion through inflammation and neurodegeneration (81–
83).

Similarly, previous studies suggest that depression is
closely related to occupational environments (84). In fact,
depression is prevalent among individuals working with
asbestos (85). Our results are consistent with observa-
tions in previous studies, suggesting a putative protective
effect of healthy food choices and non-hazardous work
environments on depression risk.

Epidemiological studies commonly use randomized
controlled trials (RCTs) as the standard approach to iden-
tify risk factors of several diseases. However, RCTs have
shortcomings as it could be expensive to conduct large
RCTs, or it may be unethical to randomly allocate par-
ticipants to a well-known harmful exposure or give a
placebo to seriously ill patients (86,87). In addition, obser-
vational studies, such as case–control or cohort stud-
ies, have limited capacity to identify causal associations
owing to potential confounding variables and biases (88).
As an alternative to this, causal inference methods used
in statistical genetics are based on genetic data to provide
a different approach in the light of the limitations of
interventional and observational studies (21). As previ-
ous studies have noted, we note that potential causal
associations identified with the LCV method should be
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used as testable hypotheses for future studies to con-
firm. Therefore, we stress the importance of triangulating
results from several studies with different study designs
before establishing a causal relationship between com-
plex traits.

We recognize that there are potential limitations to
our study. First, most GWAS summary statistics used in
the present study were retrieved from the UK Biobank
cohort, which primarily includes participants of Euro-
pean ancestry. Therefore, results should not be general-
ized to other populations until findings are confirmed
using data for different populations. Second, owing to its
nature, the LCV method assesses the predominant causal
pathway between two phenotypes and assumes no bidi-
rectional causality (24). However, it is unclear whether
bidirectional associations would still be captured by the
LCV. In the future, this assumption should be tested in
a systematic manner. Null findings in the present study
may be explained owing to a lack of power because there
is truly no causal relationship or because the relationship
is bidirectional. Null findings in the present study must
be addressed with caution.

Third, it is important to consider the complexity of
genotype–phenotype associations, in which a GWAS may
capture other traits beyond the one under study, poten-
tially reflecting other risk factors. For instance, it is likely
that the relationship between fruit consumption and
depression is influenced by SES-related variables, and
the association between lung cancer and depression is
most likely explained by a detrimental psychological
effect upon diagnosis and financial stress. In addition, in
the present study, we identified a potential causal asso-
ciation between depression and obesity but not between
depression and BMI. This discrepancy has been observed
in previous studies (49) and is explained by the difference
in phenotype definition. For example, obesity refers to
the dichotomization of BMI based on the International
Classification of Diseases, whereas BMI represents BMI
as a continuous measurement which in turn does not
entirely reflect obesity as a disease. Another example
for this is that, as suggested in previous studies (89),
phenotypes related to the use of medications were inter-
preted as a proxy for the trait they are most commonly
prescribed for.

Lastly, although the LCV method offers increased
statistical power owing to the use of genetic infor-
mation across the whole genome, it is tied to the
statistical power of the original GWAS included in the
analysis. Thus, the ability to infer potential causal
associations for phenotypes with an underpowered
GWAS is limited. This might explain the absence
of evidence for potential outcomes of depression,
particularly the absence of a statistically significant
association for suicide attempt as a potential outcome
of depression (Supplementary Material, File S1), which
comes in contrast with documented evidence in which
suicidal behaviors are frequent among patients with
depressive symptoms (90). This could be owing to the

low statistical power of the suicide attempt GWAS.
Nonetheless, previous studies report that the association
between suicidal behaviors and depression could be
confounded by traits such as hopelessness (91), which
adds up to evidence suggesting that the association
between suicide and depression is likely explained
by horizontal pleiotropic effects (92). In addition, the
etiology of individual suicide-related phenotypes, such
as suicide ideation, suicide attempt and death by suicide,
might differ and thus cannot all be captured by the
suicide attempt GWAS only (93).

In summary, we provide evidence for potential
causal genetic effects between depression and 1504
complex phenotypes. Our findings uncovered respiratory
and gastrointestinal disorders potentially increasing
depression risk. Also, we identified that obesity and
pain might increase the likelihood of depression. Our
analyses provide evidence for causal relationships
observed in previous studies and provide novel testable
hypotheses, increasing our understanding of depression
and contributing to the design of new prevention and
treatment strategies to reduce depression’s burden.

Materials and Methods
Depression dataset
We leveraged publicly available GWAS summary statis-
tics for depression from the Psychiatric Genomics
Consortium (PGC). Briefly, an inverse-variance weighted
meta-analysis was performed on samples from the
UK Biobank, the PGC and 23andMe. After excluding
the data from 23andMe, the total sample size was
500 199 individuals of which 170 756 were cases and
329 443 were controls. Full details for these GWAS
summary statistics are available at their corresponding
publication (17). The summary statistics for depres-
sion can be freely accessed via the PGC’s website
(https://www.med.unc.edu/pgc/download-results/).

Other datasets
This study used a compilation of 1504 phenotypes avail-
able at the Complex Traits Genetics Virtual Lab (CTG-
VL) web-based tool (https://genoma.io) (94), which pro-
vides free access to public GWAS summary statistics
and post-GWAS analyses to improve research collabo-
ration and reproducibility (94). Most of the GWAS sum-
mary statistics available in CTG-VL were retrieved from
the second wave of GWAS results from the UK Biobank
released by Neale’s Lab (www.nealelab.is/uk-biobank/)
(95), and the rest were retrieved from GWAS consortia.
Therefore, most of these GWAS summary statistics rep-
resent individuals of European ancestry which in turn
prevents putative biases owing to differences between
genetic ancestries (94). Phenotypes in the CTG-VL include
objective laboratory measurements, self-reported traits
and consortia meta-analysis. UK Biobank GWAS were
adjusted for age, age-squared, inferred sex (i.e. sex is
inferred from the sex chromosomes in the genome), age
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∗ inferred sex, age-squared ∗ inferred sex and 20 genetic
ancestry principal components (94,95). CTG-VL platform
included only GWAS with a nominally significant her-
itability (i.e. heritability estimate with a P-value < 0.05
before multiple testing correction) derived from LD-score
regression to ensure that analyses such as LCV and
genetic correlations can be performed (94).

Latent causal variable
The LCV method determines whether a genetic correla-
tion between traits can be explained by a putative causal
relationship rather than horizontal pleiotropic effects.
The method fits a latent variable L that mediates the
genetic correlation between two traits (trait A and trait B),
assuming that L is causal for both traits (24). In particular,
L represents the degree to which a one-way potential
causal relationship explains a genetic correlation (i.e. the
genetic effects of trait A are proportional on B but not
vice versa). Furthermore, the GCP parameter, which is
estimated by comparing the correlation between L and
trait A and the correlation between L and trait B (24),
indicates whether the genetic correlation is more likely
explained by horizontal or vertical pleiotropy.

Under the assumption of no bi-directional causality, a
GCP value equal to zero suggests the genetic correlation
is explained by horizontal pleiotropic effects, implying
the absence of potential causal genetic effects. In
contrast, a |GCP| = 1 indicates the detection of vertical
pleiotropic effects and full genetic causality. Further-
more, |GCP| values between 0 and 1 indicate partial
genetic causality (24). A |GCP| > 0.6 is considered to
be robust, which indicates a lower likelihood of false-
positive findings, and interventions targeting trait A are
likely to affect trait B owing to potential causal genetic
effects (24). Therefore, to interpret LCV results, it is
important to take into consideration three factors: the
magnitude of the genetic correlation, the value of the
GCP estimate and the direction of the GCP estimate,
which can be positive or negative. The GCP value is not a
measure of the magnitude of the potential causal effects
but indicates the proportion of a genetic correlation that
can be explained by potential causal effects. For instance,
associations with a small genetic correlation (|rG| < 0.30)
and a large |GCP| estimate close to 1 suggest that almost
all of the genetic overlap between two traits, even though
it is small, is explained by potential vertical pleiotropic
effects. In addition, in the present study, a negative
GCP between depression and trait A suggests potential
causal genetic effects from trait A on depression, while a
positive GCP value between depression and trait A would
imply potential causal genetic effects from depression
on trait A.

In the present study, we estimated the GCP between
depression and 1504 complex traits. We used the
phenome-wide analysis pipeline publicly available in
CTG-VL as described in previous studies (96,97). The
phenome-wide analysis pipeline was created using

the original R script for the LCV method made avail-
able by the original authors in a GitHub repository
(https://github.com/lukejoconnor/LCV) (24). Consistency
of alleles and variants for all GWAS summary statis-
tics was ensured using munge_sumstats.py, which is
available in the LD score regression software. Also,
HapMap SNPs were extracted using the list of SNPs
w_hm3_noMHC.snplist (https://github.com/bulik/ldsc/
wiki). In this study, to conduct the analyses, we uploaded
GWAS summary statistics for depression to CTG-VL.
Then, we used the phenome-wide analysis pipeline to
perform LD score regression (98) and LCV analyses (24)
to estimate genetic correlations and potential causal
relationships, respectively. Finally, we created causal
architecture plots to visualize the results. Full details
on using and interpreting results from the publicly
available phenome-wide analysis pipeline are available
elsewhere (96,97). The LCV was applied to all phenotypes
that showed a genetic correlation with depression at
Benjamini-Hochberg FDR < 5%. Similarly, we applied
FDR < 5% on all GCP estimates obtained from the LCV
method.

Sensitivity analysis
As a sensitivity analysis, we performed LCV analyses to
further explore potential causal associations identified
in this study using publicly available GWAS summary
statistics with larger sample sizes. These included
cigarettes per day (N = 403 928) (99), smoking cessa-
tion (N = 820 192) (99), smoking initiation (N = 1 359 002)
(99), drinks per week (N = 1 039 210) (99), vitamin D
(N = 417 580) (72), lifetime anxiety (N = 83 566) (100) and
BMI (N = ∼700 000) (101).
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